

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Platforms

ObjFW is known to work on the following platforms, but should run on many
others as well.

AmigaOS

	OS Versions: 3.1

	Architectures: m68k

	Compilers: GCC 6.4.1b (amiga-gcc)

	Runtimes: ObjFW

	Limitations: No threads

Android

	OS Versions: 4.0.4, 4.1.2, 6.0.1

	Architectures: ARMv6, ARMv7, ARM64

	Compilers: Clang 3.3, Clang 3.8.0

	Runtimes: ObjFW

Bare metal ARM Cortex-M4

	Architectures: ARMv7E-M

	Compilers: Clang 3.5

	Runtimes: ObjFW

	Notes: Bootloader, libc (newlib) and possibly external RAM required

DOS

	OS Versions: Windows XP DOS Emulation, DOSBox

	Architectures: x86

	Compilers: DJGPP GCC 4.7.3 (djdev204)

	Runtimes: ObjFW

DragonFlyBSD

	OS Versions: 3.0, 3.3-DEVELOPMENT

	Architectures: x86, x86_64

	Compilers: GCC 4.4.7

	Runtimes: ObjFW

FreeBSD

	OS Versions: 9.1-rc3, 10.0

	Architectures: x86_64

	Compilers: Clang 3.1, Clang 3.3

	Runtimes: ObjFW

Haiku

	OS version: r1-alpha4

	Architectures: x86

	Compilers: Clang 3.2, GCC 4.6.3

	Runtimes: ObjFW

iOS

	Architectures: ARMv7, ARM64

	Compilers: Clang

	Runtimes: Apple

Linux

	Architectures: Alpha, ARMv6, ARM64, Itanium, m68k, MIPS (O32), RISC-V 64,
PowerPC, SH4, x86, x86_64

	Compilers: Clang 3.0-7.0, GCC 4.6-8.2

	Runtimes: ObjFW

macOS

	OS Versions: 10.5, 10.7-10.14, Darling

	Architectures: PowerPC, PowerPC 64, x86, x86_64

	Compilers: Clang 3.1-7.0, GCC 4.2.1

	Runtimes: Apple, ObjFW

MorphOS

	OS Versions: 3.9, 3.10

	Architectures: PowerPC

	Compilers: GCC 5.3.0, GCC 5.4.0

	Runtimes: ObjFW

	Limitations: No threads

	Notes: libnix and ixemul are both supported

NetBSD

	OS Versions: 5.1-7.99

	Architectures: ARM, ARM (big endian, BE8 mode), SPARC, SPARC64, x86, x86_64

	Compilers: Clang 3.0-3.2, GCC 4.1.3 & 4.5.3

	Runtimes: ObjFW

Nintendo 3DS

	OS Versions: 9.2.0-20E, 10.5.0-30E / Homebrew Channel 1.1.0

	Architectures: ARM (EABI)

	Compilers: GCC 5.3.0 (devkitARM release 45)

	Runtimes: ObjFW

	Limitations: No threads

Nintendo DS

	Architectures: ARM (EABI)

	Compilers: GCC 4.8.2 (devkitARM release 42)

	Runtimes: ObjFW

	Limitations: No threads, no sockets

	Notes: File support requires an argv-compatible launcher (such as HBMenu)

OpenBSD

	OS Versions: 5.2-6.1

	Architectures: MIPS64, PA-RISC, PowerPC, SPARC64, x86_64

	Compilers: GCC 6.3.0, Clang 4.0

	Runtimes: ObjFW

PlayStation Portable

	OS Versions: 5.00 M33-4

	Architectures: MIPS (EABI)

	Compiler: GCC 4.6.2 (devkitPSP release 16)

	Runtimes: ObjFW

	Limitations: No threads, no sockets

QNX

	OS Versions: 6.5.0

	Architectures: x86

	Compilers: GCC 4.6.1

	Runtimes: ObjFW

Solaris

	OS Versions: OpenIndiana 2015.03

	Architectures: x86, x86_64

	Compilers: Clang 3.4.2, GCC 4.8.3

	Runtimes: ObjFW

Wii

	OS Versions: 4.3E / Homebrew Channel 1.1.0

	Architectures: PowerPC

	Compilers: GCC 4.6.3 (devkitPPC release 26)

	Runtimes: ObjFW

	Limitations: No threads

Windows

	OS Versions: XP (x86), 7 (x64), 8 (x64), 8.1 (x64), 10, Wine (x86 & x64)

	Architectures: x86, x86_64

	Compilers: GCC 6.2.0 from msys2 (x86 and x64), Clang 3.9.0 from msys2 (x86)

	Runtimes: ObjFW

Others

Basically, it should run on any POSIX system to which GCC >= 4.6 or a recent
Clang version has been ported. If not, please send an e-mail with a bug report.

If you successfully ran ObjFW on a platform not listed here, please send an
e-mail to js@heap.zone so it can be added here!

If you have a platform on which ObjFW does not work, please contact me as well!

Forwarding

As forwarding needs hand-written assembly for each combination of CPU
architecture, executable format and calling convention, it is only available
for the following platforms (except resolveClassMethod: and
resolveInstanceMethod:, which are always available):

	ARM (EABI/ELF, Apple/Mach-O)

	ARM64 (ARM64/ELF, Apple/Mach-O)

	MIPS (O32/ELF, EABI/ELF)

	PowerPC (SysV/ELF, EABI/ELF, Apple/Mach-O)

	SPARC64 (SysV/ELF)

	x86 (SysV/ELF, Apple/Mach-O, Win32/PE)

	x86_64 (SysV/ELF, Apple/Mach-O, Mach-O, Win64/PE)

Apple/Mach-O means both, the Apple ABI and runtime, while Mach-O means the
ObjFW runtime on Mach-O.

ObjFW on Windows

This file contains instructions on how to get a working build environment to
compile and use ObjFW on Windows.

Getting MSYS2

The first thing to install is MSYS2 [https://msys2.github.io] to provide a
basic UNIX-like environment for Windows. Unfortunately, the binaries are not
signed and there is no way to verify their integrity, so only download this
from a trusted connection. Everything else you will download using MSYS2
later will be cryptographically signed.

Updating MSYS2

The first thing to do is updating MSYS2. It is important to update things in
a certain order, as pacman (the package manager MSYS2 uses, which comes
from ArchLinux) does not know about a few things that are special on Windows.

First, update the mirror list:

$ pacman -Sy pacman-mirrors

Then proceed to update the msys2-runtime itself, bash and pacman:

$ pacman -S msys2-runtime bash pacman mintty

Now close the current window and restart MSYS2, as the current window is now
defunct. In a new MSYS2 window, update the rest of MSYS2:

$ pacman -Su

Now you have a fully updated MSYS2. Whenever you want to update MSYS2,
proceed in this order. Notice that the first pacman invocation includes
-y to actually fetch a new list of packages.

Installing MinGW-w64 using MSYS2

Now it’s time to install MinGW-w64. If you want to build 32 bit binaries:

$ pacman -S mingw-w64-i686-clang mingw-w64-i686-gcc-objc

For 64 bit binaries:

$ pacman -S mingw-w64-x86_64-clang mingw-w64-x86_64-gcc-objc

There is nothing wrong with installing them both, as MSYS2 has created two
entries in your start menu: MinGW-w64 Win32 Shell and
MinGW-w64 Win64 Shell. So if you want to build for 32 or 64 bit, you just
start the correct shell.

Finally, install a few more things needed to build ObjFW:

$ pacman -S autoconf automake git make

Getting, building and installing ObjFW

Start the MinGW-w64 Win32 or Win64 Shell (depening on what version you want
to build - do not use the MSYS2 Shell shortcut, but use the MinGW-w64 Win32
or Win64 Shell shortcut instead!) and check out ObjFW:

$ git clone https://heap.zone/git/objfw.git

You can also download a release tarball if you want. Now go to the newly
checked out repository and build and install it:

$./autogen.sh && ./configure && make -j16 install

If everything was successfully, you can now build projects using ObjFW for
Windows using the normal objfw-compile and friends.

 ObjFW is a portable, lightweight framework for the Objective C language. It
enables you to write an application in Objective C that will run on any
platform supported by ObjFW without having to worry about differences between
operating systems or various frameworks that you would otherwise need if you
want to be portable.

See https://heap.zone/objfw for more information.

Installation

To install ObjFW, just run the following commands:

$./configure
$ make
$ make install

In case you checked out ObjFW from the Git repository, you need to run
the following command first:

$./autogen.sh

Building as a macOS or iOS framework

When building for macOS or iOS, everything is built as a .framework by
default if --disable-shared has not been specified to configure.

To build for iOS, use something like this:

$ clang="clang --sysroot $(xcrun --sdk iphoneos --show-sdk-path)"
$ export OBJC="$clang -arch armv7 -arch arm64"
$ export OBJCPP="$clang -arch armv7 -E"
$ export IPHONEOS_DEPLOYMENT_TARGET="10.0"
$./configure --prefix=/usr/local/ios --host=arm-apple-darwin

To build for the iOS simulator, use something like this:

$ clang="clang --sysroot $(xcrun --sdk iphonesimulator --show-sdk-path)"
$ export OBJC="$clang -arch i386 -arch x86_64"
$ export OBJCPP="$clang -arch i386 -E"
$ export IPHONEOS_DEPLOYMENT_TARGET="10.0"
$./configure --prefix=/usr/local/iossim --host=i386-apple-darwin

Using the macOS or iOS framework in Xcode

To use the macOS framework in Xcode, you need to add the .frameworks to
your project and add the following flags to Other C Flags:

-fconstant-string-class=OFConstantString -fno-constant-cfstrings

Optionally, if you want to use blocks, you also need to add:

-fblocks

Bugs and feature requests

If you find any bugs or have feature requests, feel free to send a
mail to js@heap.zone!

Commercial use

If for whatever reason neither the terms of the QPL nor those of the GPL
work for you, a proprietary license for ObjFW including support is available
upon request. Just write a mail to js@heap.zone and we can find a reasonable
solution for both parties.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

